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N U M E R I C A L  M O D E L I N G  OF AN U N D E R W A T E R  

E X P L O S I O N  I N  A N  A I R  C A V I T Y  

P. Z. Lugovoi and V. P. Mukoid UDC 533.593 

An efficient numerical algorithm based on Godunov method is proposed that permits qualitative 
and quantitative calculations of the hydrodynamic flows resulting from the detonation of 
explosive charges in an air cavity. Calculations are performed by a difference scheme using 
moving difference grids in which the moving boundaries are the contact surfaces between the 
detonation products and air and between air and water, and the shock-wave front. The reliability 
of the calculations is confirmed by experimental data. 

I n t r oduc t i on .  Experimental and theoretical studies of the laws of propagation in air and water of shock 
waves produced by the detonation of condensed high explosives (HE) have been performed by many authors. 
Experimental results have been presented in numerous publications, foremost in [1-3]. With the development 
of computer technology and numerical methods, the trend has been toward the theoretical anMysis of explosive 
phenomena [4-6]. As a rule, calculations have been made by methods that permit a through computation with 
the introduction of artificial viscosity into the difference equations. In this case, the shock front is smeared 
out over several computation intervals, and the peak values of the hydrodynaxnic parameters of the front are 
considerably reduced. Using Lagrangian equations of motion leads to strong deformation of the calculation 
grid and an increase in calculation time. Using equations in Eulerian variables requires that the problem of 
determining the position of the contact boundary be solved. The algorithms proposed for this purpose in [7, 
8] are very cumbersome and approximate. 

Experimental results and an analysis of the character of damping of hydroshock waves in the explosion 
of HE charges p l a r ~  at the center of a spherical air cavity are given in [9]. The presence of aAditional contact 
boundaries complicates the wave pattern of the process and prevents one from measuring everywhere the 
pararneters being studied. The effective numerical algorithm purposed in the present paper uses Godunov's 
method of discontinuity decay [10] and allows one to perform a detailed modeling of an underwater explosion 
in an air cavity. The calculated results are compared with experimental data and confirm the validity and 
effectiveness of the method used. 

1. Fo rmula t ion  of  t h e  P r o b l e m .  We assume that in an unbounded space filled with water at pressure 
P = Pl and density p = pl there is a spherical air cavity of radius r = R at pressure p = pl and density p = pl- 
At the center of the latter there is a shell of radius r = r0 containing detonation products (DP) consisting 
of a highly heated, compressed gas. At the time t = 0, the shell disappears. The motions of the DP, air, and 
water must be calculated. 

The nonsteady dynamical behavior of the detonation products and the ambient medium is described 
by the following system of equations of gas dynamics in Eulerian variables [10]: 

0a 0b 2 
0-7 + o-7 = ( f -  b); (1.1) 
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II I II II llill a =  pu , b =  pu 2 + p , f =  . (1.2) 
p(e + u 12) pu(e +  212) + pu 

Here e is the internal energy per unit  mass of gas (liquid) and u is velocity along the r axis. 
Equations (1.1) and (1.2) are supplemented by the following equations of state: 

(a) for air and the detonation products,  e = p/(~e - 1)p, where the adiabatic exponent  for air is ze = 1.4 and 
for the detonation products,  it is ~e = ze(p); formulas for the adiabatic exponent a~ of HE of the TNT type 
are given in [4]; 
(b) for water, e = (p + ~ p 0 ) / ( a e -  1)p + ~ / (ae  - 1), where 

~e=7.15 ,  p 0 = 3 0 4 5 " 1 0  s Pa if p~<3-109 Pa; 

ae=6 .29 ,  p 0 = 4 2 5 0 " 1 0  s Pa if p > 3 . 1 0 9  Pa; 

co = r  is the speed of sound in air under natural conditions. 
The model of an actual wave detonation is used. For the spherical case and an explosive of the TNT 

type, the initial distribution of the thermodynamic parameters of the gas in the region occupied by explosion 
products, which corresponds to the instant the detonation wave emerges at the surface of the charge, is given 
by the approximating expressions of [4]. 

The initial distribution of the  parameters of the ambient medium (air and water) is given with allowance 
for the hydrostatic pressure of the  liquid at the known depth of placement of the charge. 

2. M e t h o d  of  N u m e r i c a l  S o l u t i o n .  We adopt the traditional notat ion of Godunov's  method of 
discontinuity decay [10]. For the  case of a moving difference grid, the difference scheme approximating the 
system of differential equations (1.1) and (1.2) can be written as 

2(Ari-1/2ri-1/2 + + A G - 1 D )  (f - b)1-1/2]_ aJ-1 /2ArJ-1 /2  = a j _ l / 2 A r i _ l / 2  -- r [ ( B j  - B j -1 )  + 
r j -1 /2  

(j = 0 , 1 , . . . , J ) ,  

where 

II II B 1 =  R U ( U - W ) + P  , A r  i - l D = r  i - r  i -1 ,  
R ( U  - W ) ( E  + U2/2) + P U  J 

A r j _ l / 2  = rj  - r j _ l ,  r j - l /2  = 0.5(r j -I- rJ-1), r i_ l /2  = 0.5(rj -[- r j -1) ;  

the subscripts correspond to t ime t = to and the superscripts to t = to + r ,  P ,  R, U, and E are values of 
the hydrodynamic flow parameters p, p, u, and e at the nodes of the difference grid calculated by solving the 
problem of discontinuity decay [10], and W is the velocity of a node. 

The allowable step r of integration with respect to t ime is given by the formula 

r = v min A r j -1 /2  
, m a x ( D 2 _ l -  W i ; - D  } + W i - ,  ) ' 

in which and Dj  are the velocities of the right-hand and left-hand waves for the discontinuity decay at ~2_1 1 
a node of the difference grid, and g is the safety margin, 0 < g <~ 1. 

The universal algori thm of the computer program is constructed under the following assumptions: 
(a) the problem is solved in moving grids; the detonation products-air  and air-water contact surfaces 

and the shock front are chosen as the moving boundaries; the intermediate nodes of the difference grid move 
in accordance with one or another  law as a function of the flow regime and the type of medium; 
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(b) one calculation cell is taken at the moment the detonation (shock) wave emerges at the contact 
surface in the ambient medium; in this case, the extreme right-hand node of the grid is identified with the 
shock front; as the  pressure increases in the cell, the shock wave moves away from the contact boundary, 
leading to an increase in the  cell size; the introduction of intermediate grid nodes is provided for in this case 
(division of the cell whose size becomes larger than a preset amount); 

(c) a purely underwater  explosion is calculated at R = r0 and the explosion of the HE charge in air is 
calculated at R = co. 

Thus, everywhere except for narrow zones near the contact surfaces, the calculation is made with 
isolation of the shock front. This ensures a more reliable calculation of the problem compared to methods of 
through calculation with the introduction of artificial viscosity. 

3. A n a l y s i s  o f  t h e  C a l c u l a t i o n  Resu l t s .  The mass of the explosive charge was varied in the range 
m = (0.42-2.4)- 10 - s  kg, the  radius of the cavity was R = (1.5-15)- 10 -2 m, and the ratio of the radii of the 
cavity and the charge was in the range of 3.75 < R/ro < 37.5. 

Following [9], we call an explosion in water a normal explosion. Figure 1 shows the pressure at the 
shock front as a function of the reduced distance F = rim 1/s. The dot-and-dashed curve corresponds to the 
experimental data  of [1], the solid upper curve corresponds to a normal explosion, the lower curve to the 
explosion of a charge in air, and the intermediate curves correspond to explosions in an air cavity for different 
values of the charge mass m and the cavity radius R. 

The start  of a sharp pressure rise (intermediate curves) corresponds to the position (reduced coordinate) 
of the air-water contact surface. In particular, the extreme left-hand curve corresponds to m = 2.4.10 -3 kg 
and R = 1.5- 10 -2 m. The characteristic bend in the rise section is explained by the additional dynamical 
head produced by the explosion products, which for such m and R follow almost immediately behind the air 
shock front. The dashed curve denotes the initial pressure at the boundary of the cavity, calculated in [9] on 
the basis of experimental data; the curve lies near the bend points on the intermediate curves. These points 
correspond to the pressure at the hydroshock front to the right of the contact surface. Satisfactory agreement 
between the experimental and calculated results is observed. 

Figure 2 shows the t ime variation of pressure at a distance r = 0.15 m from the center of the source for 
different cavity radii R and charge masses m: 4.37-10 -2 m and 0.42- 10 -3 kg, 1.75.10 -2 m and 0.42- 10 -3 kg, 
and 1.75- 10 -2 m and 0.84- 10 -3 kg (curves 1-3, respectively). The solid curves were plotted from calculated 
data and the dashed curves are shock-wave osciUograms [9]. Each curve consists of a wave train of decreasing 
intensity arising in multiple reflection of the air shock wave from the contact surface and the center of 
symmetry. The amplitudes of the propagating waves and the times of arrival of the reflected waves on the 
experimental and calculated curves are in good agreement. 
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The pressure at the shock front as a function of distance for m = 0.42.10 -3 kg and different R is 
shown in Fig. 3. The upper curve corresponds to the normal explosion and the lower curve to the explosion 
in air. The vertical sections on the intermediate curves correspond to the coordinate of the cavity radius. The 
maximum pressure at the front of the hydroshock decreases with increase in the cavity radius and becomes 
considerably lower than the wave pressure in a normal explosion. 

The influence of counterpressure in the calculation of explosions in the air cavity on the character of 
damping of hydroshocks is seen from Fig. 4. The calculations were made for a charge of mass m = 0.42-10 -3 kg 
for R = 1.75- 10 -2 m and 4.37- 10 -2 m. The dotted curves correspond to p] = 105 Pa and the solid curves 
to pz = 3- 105 Pa. It should be noted that a considerable difference between the results obtained for different 
counterpressures is observed at small distances from the contact surface. This is because the air density 
increases and the character of formation and damping of the air shock wave changes with increase in pressure 
in the air cavity. In our case, in particular, the maximum amplitude p of the air shock wave generated by the 
detonation wave emerging at the contact surface increases from 1.36 �9 l0 s to 3. l0 s Pa. 

Experience with numerous calculations made by the authors showed that  the safety margin u takes 
minimum values at the moments when the shock wave is reflected from the center of the charge and the 
air-water contact surface, as well as when intermediate nodes are introduced into the difference grid; the 
value v = 0.25 always ensures stability of the calculation. 

Thus, the numerical algorithm proposed here, based on Godunov's method of discontinuity decay, 
makes it possible to investigate qualitatively and quantitatively the laws and properties of hydrodynamic flow 
in explosions of HE charges in an air cavity. The algorithm's reliability is confirmed by the adequacy of the 
numerical results to the experimental data. 

This work was supported by the Ukrainian Scientific Technology Center (Grant No. 177). 
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